Page 6 - Alagna_Fici_alii_2015
P. 6

          16. Sintes, T., Marba `, N., Duarte, C. M. & Kendrick, G. A. Nonlinear processes in  42. Blanchette, C. A., Worcester, S. E., Reed, D. & Holbrook, S. J. Algal morphology,
            seagrass colonisation explained by simple clonal growth rules. Oikos 108, 165–175  flow, and spatially variable recruitment of surfgrass Phyllospadix torreyi. Mar.
            (2005).                                             Ecol.-Prog. Ser. 184, 119–128(1999).
          17. Di Carlo, G., Badalamenti, F., Jensen, A., Koch, E. & Riggio, S. Colonisation  43. McConchie, C. A. & Knox, R. B. (1989).Pollination and reproductive biology of
            process of vegetative fragments of Posidonia oceanica (L.) Delile on rubble  seagrasses. In: Biology of Seagrasses. A Treatise on the Biology of Seagrasses with
            mounds. Mar. Biol. 147, 1261–1270 (2005).           Special Reference to the Australian Region (eds. Larkum, A. W. D., McComb, A. J.
          18. Badalamenti, F., Alagna, A., D’anna, G., Terlizzi, A. & Di Carlo, G. The impact of  & Shepherd, S. A.) 74–111 (Elsevier, Amsterdam, 1989).
            dredge-fill on Posidonia oceanica seagrass meadows: Regression and patterns of  44. Koch, E. W., Ailstock, M. S., Booth, D. M., Shafer, D. J. & Magoun, A. D. The role
            recovery. Mar. Poll. Bull. 62, 483–489 (2011).      of currents and waves in the dispersal of submersed angiosperm seeds and
          19. Diaz-Almela, E. et al. Patterns of seagrass (Posidonia oceanica) flowering in the
                                                                seedlings. Res. Ecol. 18, 4, 584–595 (2010).
            Western Mediterranean. Mar. Biol. 148, 723–742 (2006).  45. Eriksson, O. & Ehrle ´n, J. Seed and microsite limitation of recruitment in plant-
          20. Buia, M. C. & Mazzella, L. Reproductive phenology of the Mediterranean
                                                                populations. Oecologia 91, 3, 360–364 (1992).
            seagrasses Posidonia oceanica (L.) Delile, Cymodocea nodosa Ucria) Aschers, and  46. Mu ¨nzbergova ´, Z. & Herben, T. Seed, dispersal, microsite, habitat and recruitment
            Zostera noltii Hornem. Aq. Bot. 40, 4, 343–362 (1991).
                                                                limitation: identification of terms and concepts in studies of limitations. Oecologia
          21. Calvo, S., Orestano, C. F. & Tomasello, A. Distribution, structure and phenology  145, 1, 1–8 (2005).
            of Posidonia oceanica meadows along sicilian coasts. Plant Biosyst 129, 1, 351–356  47. Infantes, E., Orfila, A., Bouma, T. J., Simarro, G. & Terrados, J. Posidonia oceanica
          22. Procaccini, G., Alberte, R. S. & Mazzella, L. Genetic structure of the seagrass  and Cymodocea nodosa seedling tolerance to wave exposure. Limnol. Oceanogr.
            Posidonia oceanica in the western Mediterranean: ecological implications. Mar.  56, 2223–2232 (2011).
            Ecol.-Prog. Ser. 140, 153–160 (1996).             48. Tomas, F., Turon, X. & Romero, J. Seasonal and small–scale spatial variability of
          23. Arnaud-Haond, S. et al. Vicariance patterns in the Mediterranean Sea: east–west  herbivory pressure on the temperate seagrass Posidonia oceanica. Mar. Ecol.-
            cleavage and low dispersal in the endemic seagrass Posidonia oceanica. J. Biogeogr.  Prog. Ser. 301, 95–107 (2005).
            34, 963–976 (2007).                               49. Page `s, J. F., Gera, A., Romero, J. & Alcoverro, T. Matrix composition and patch
          24. Gambi, M. C. & Guidetti, P. Morphological observation on seedling of Posidonia  edges influence plant–herbivore interactions in marine landscapes. Func. Ecol. 28,
            oceanica (L.) Delile germinated ‘‘in situ’’ Biol. Mar. Medit. 5, 1, 549–552 (1998).  1440–1448 (2014).
          25. Balestri, E., Piazzi, L., & Cinelli, F. Survival and growth of transplanted and natural  50. Connell, S. D., Foster, M. S. & Airoldi, L. What are algal turfs? Towards a better
            seedlings of Posidonia oceanica (L.) Delile in a damaged coastal area. J. Exp. Mar.  description of turfs. Mar. Ecol.-Prog. Ser. 495, 299–307 (2014).
            Biol. Ecol. 228, 209–225 (1998).                  51. Kawamata, S. Inhibitory effects of wave action on destructive grazing by sea
          26. Piazzi, L., Acunto, S. & Cinelli, F. In situ survival and development of Posidonia  urchins a review. Bull. Fish. Res. Agen. 32, 95, 102 (2010).
            oceanica (L.) Delile seedlings. Aq. Bot. 63, 103–112 (1999).  52. Giakoumi, S., Cebrian, E., Kokkoris, G. D., Ballesteros, E. & Sala, E. Relationships
          27. Buia, M. C., Gambi, M. C. & Badalamenti, F. Morpho-chronological observations  between fish, sea urchins and macroalgae: The structure of shallow rocky
            on seedlings and juvenile shoots of Posidonia oceanica (L.) Delile collected ‘in situ’  sublittoral communities in the Cyclades, Eastern Mediterranean. Est. Coast. Shel.
            in various coastal areas. Biol. Mar. Medit. 9, 1, 600–604 (2002).  Sci. 109, 1–10 (2012).
          28. Alagna, A., Vega Ferna ´ndez, T., Terlizzi, A. & Badalamenti, F. Influence of  53. Kendrick, G. A. et al. The central role of dispersal in the maintenance and
            microhabitat on seedling survival and growth of the mediterranean seagrass  persistence of seagrass populations. BioScience 62, 1, 56–65 (2012).
            Posidonia oceanica (l.) Delile. Estuar. Coast. Shelf S. 119, 119–125 (2013).  54. Eriksson, O. Seedling dynamics and life histories in clonal plants. Oikos 55,
          29. Terrados, J., Marı ´n, A. & Celdra ´n, D. Use of Posidonia oceanica seedlings from  231–238 (1989).
            beach-cast fruits for seagrass planting. Bota. Mar. 56, 2, 185–195 (2013).  55. Thiede, J. Glacial Mediterranean. Nature 276, 680–683 (1978).
          30. Belzunce, M., Navarro, R. M. & Rapoport, H. F. Posidonia oceanica seedling root
            structure and development. Aq. Bot. 88, 3, 203–210 (2008).
          31. Balestri, E., Piazzi, L. & Cinelli, F. In vitro germination and seedling development
            of Posidonia oceanica. Aq. Bot. 60, 83–93(1998).  Acknowledgments
          32. Belzunce, M., Navarro, R. M. & Rapoport, H. F. Posidonia oceanica seeds from  We are grateful to A.M. Mannino for collaboration in laboratory work, to R. Chemello for
            drift origin: viability, germination and early plantlet development. Bot. Mar. 51,1,
                                                              providing pictures in Fig. 1 and to T.J. Willis for revision of the language.
            1–9 (2008).
          33. Rivers, D. O., Kendrick, G. A. & Walker, D. I. Microsites play an important role for  This paper was inspired by the genius of Silvano Riggio. We wish to thank him for having
                                                              stimulated all of us ‘‘to be curious and fascinated by everything’’.
            seedling survival in the seagrass Amphibolis antarctica. J. Exp. Mar. Biol. Ecol. 401,
            29–35 (2011).
          34. Kuo, J. & Cambridge, M. L. Morphology, anatomy and histochemistry of the  Author contributions
            Australian seagrasses of the genus Posidonia ko¨nig (posidoniaceae). II. Rhizome  All authors contributed equally to this work. F.B. designed the study and collected data, F.B.
            and root of Posidonia australis Hook. F. Aq. Bot. 5, 191–206 (1978).  and S.F. wrote the first draft of the introduction, A.A. wrote the main paper. All authors
          35. Kuo, J. & McComb, A. J. Seagrass taxonomy, structure and development. In:  discussed the results and implications and commented on the manuscript at all stages.
            Biology of Seagrasses. A Treatise on the Biology of Seagrasses with Special Reference
            to the Australian Region (eds. Larkum, A. W. D., McComb, A. J. & Shepherd, S. A.)
            6–56 (Elsevier, Amsterdam, 1989).                 Additional information
          36. Barnabas, A. D. & Arnott, H. J. Zostera capensis Setchell: Root structure in relation  Competing financial interests: The authors declare no competing financial interests.
            to function. Aq. Bot. 27, 309–322 (1987).
          37. Gibbs, R. E. Phyllospadix as a beach-builder. Am. Nat. 442, 36, 101–109 (1902).  How to cite this article: Badalamenti, F., Alagna, A. & Fici, S. Evidences of adaptive traits to
          38. Rutishauser, R. Structural and developmental diversity in Podostemaceae (river-  rocky substrates undermine paradigm of habitat preference of the Mediterranean seagrass
                                                              Posidonia oceanica. Sci. Rep. 5, 8804; DOI:10.1038/srep08804 (2015).
            weeds). Aq. Bot. 57, 29–70 (1997).
          39. Ja¨ger-Zu ¨rn, I. & Grubert, M. Podostemaceae depend on sticky biofilms with
            respect to attachment to rocks in waterfalls. Int. J. Plant Sci. 161, 4, 599–607  This work is licensed under a Creative Commons Attribution 4.0 International
            (2000).                                                   License. The images or other third party material in this article are included in the
          40. Braten, T. Observations on mechanisms of attachment in the green alga Ulva  article’s Creative Commons license, unless indicated otherwise in the credit line; if
            mutabilis Foyn. an ultrastructural and light microscopical study of zygotes and  the material is not included under the Creative Commons license, users will need
            rhizoids. Protoplasma 84, 161–173(1975).                  toobtainpermissionfrom the licenseholderinorder toreproduce the material.To
          41. Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8,9,  view a copy of this license, visit
            623–633 (2010).

          SCIENTIFIC REPORTS | 5 : 8804 | DOI: 10.1038/srep08804                                               6
   1   2   3   4   5   6